Saturday, January 18, 2014

Neurčitý integrál 

 

Integrovanie racionálnych funkcií, rozklad na parciálne zlomky

Funkciu, ktorá je podielom dvoch polynómov nazývame racionálnou funkciou. Ak stupeň polynómu v čitateli je ostro menší ako stupeň polynómu v menovateli, hovoríme o rýdzoracionálnej funkcii. Každú racionálnu funkciu možno vyjadriť ako súčet polynómu a rýdzoracionálnej funkcie (v prípade, ak daná funkcia je rýdzoracionálna príslušný polynóm je rovný nule).

Každú rýdzoracionálnu funkciu možno rozložiť na súčet tzv. parciálnych (elementárnych) zlomkov. Pod parciálnymi zlomkami rozumieme zlomky tvaru
$$ \frac{A}{x-a}, \frac{A}{(x-a)^2},\ldots, \frac{A}{(x-a)^n},$$
kde $A,a\in \mathbb{R}$ alebo zlomky tvaru
$$\frac{Ax+B}{x^2+bx+c},\frac{Ax+B}{(x^2+bx+c)^2},\ldots,\frac{Ax+B}{(x^2+bx+c)^n},$$
kde $A,B,b,c\in \mathbb{R}$ a kvadratický trojčlen $x^2+bx+c$ nemá reálne korene, t.j., platí $D=b^2-4c<0$.

Neurčitý integrál z racionálnej funkcie počítame tak, že funkciu vyjadríme ako súčet polynómu a rýdzoracionálnej funkcie, ktorú následne rozložíme na súčet parciálnych zlomkov. Týmto sa problém integrovania racionálnej funkcie redukuje na integrovanie polynómov a parciálnych zlomkov.

 

Príklad 1

Vypočítajte neurčitý integrál
$$
\int{\frac{2x^3+5x^2+8}{2x^2+7x-15}\ \mathrm{d}x}
$$

Riešenie

Funkcia $\displaystyle\frac{2x^3+5x^2+8}{2x^2+7x-15}$ nie je rýdzoracionálna.

Najprv vydelíme polynóm z čitateľa funkcie polynómom z jej menovateľa. Zvyšok po tomto podiele je už rýdzoracionálnou funkciou.
$$
\frac{2x^3+5x^2+8}{2x^2+7x-15}=(2x^3+5x^2+8):(2x^2+7x-15)=x-1+\frac{22x-7}{2x^2+7x-15}
$$
$$
\frac{2x^3+5x^2+8}{2x^2+7x-15}=x-1+\frac{22x-7}{2x^2+7x-15}
$$
$$
\int{\frac{2x^3+5x^2+8}{2x^2+7x-15}\ \mathrm{d}x}=\int{\left(x-1+\frac{22x-7}{2x^2+7x-15}\right)\ \mathrm{d}x}=
$$
$$
\int{x\ \mathrm{d}x}-\int{1\ \mathrm{d}x}+\int{\frac{22x-7}{2x^2+7x-15}\ \mathrm{d}x}
$$
Funkcia $\displaystyle \frac{22x-7}{2x^2+7x-15}$ je rýdzoracionálna, na výpočet integrálu z tejto funkcie môžeme použiť metódu: rozklad na parciálne zlomky.
$$
\frac{22x-7}{2x^2+7x-15}=\frac{22x-7}{(2x-3)(x+5)}=\frac{A}{2x-3}+\frac{B}{x+5}
$$
$$
\frac{22x-7}{2x^2+7x-15}=\frac{A(x+5)+B(2x-3)}{(2x-3)(x+5)}
$$

$$
 22x-7=A(x+5)+B(2x-3)=(A+2B)x+(5A-3B)
$$
$$
\begin{eqnarray*}
\textrm{koeficient pri} \qquad  x^1; \quad 22&=&A+2B\\
x^0;\quad -7&=&5A-3B\\
\end{eqnarray*}
$$
Riešením sústavy lineárnych rovníc  je $A=4$ a $B=9$.
$$
\int{\frac{2x^3+5x^2+8}{2x^2+7x-15}\ \mathrm{d}x}=\int{x}\ \mathrm{d}x-\int{1}\ \mathrm{d}x+\int{\frac{22x-7}{2x^2+7x-15}}\ \mathrm{d}x=
$$
$$
\int{x}\ \mathrm{d}x-\int{1}\ \mathrm{d}x+\int{\frac{4}{2x-3}}+\int{\frac{9}{x+5}}\ \mathrm{d}x=
$$
$$
\frac{x^2}{2}-x+2\ln{\left|2x-3\right|}+9\ln{\left|x+5\right|}+c
$$